24+4t+t^2=180

Simple and best practice solution for 24+4t+t^2=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 24+4t+t^2=180 equation:



24+4t+t^2=180
We move all terms to the left:
24+4t+t^2-(180)=0
We add all the numbers together, and all the variables
t^2+4t-156=0
a = 1; b = 4; c = -156;
Δ = b2-4ac
Δ = 42-4·1·(-156)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{10}}{2*1}=\frac{-4-8\sqrt{10}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{10}}{2*1}=\frac{-4+8\sqrt{10}}{2} $

See similar equations:

| 16=x^2+9 | | 14p+2=20+1.50p | | 6n+16=6(n+10) | | x^2/2+0,0634x-7,9*10^-9=0 | | x^2/2+0,0634x-7,9X10^-9=0 | | 78x+120=70x+150 | | 8x-3=(×+4) | | .9=1.5x | | 78m+120=70m+150 | | 180+6x=160+8x | | 3+3n=1 | | 17j+19j-4j-12j-14j=15 | | 5(4x-16)+8x=12 | | 6r+7=3+4r | | 4c-8c=c/3 | | 18n+72=6n+24 | | 2–5=2y+14 | | 14a+18a+16=12 | | -3x-4.6=3.9 | | 3x+3=18) | | 18t-10t-5t+-19t=16 | | 2(2x+10)=810 | | 19n-18n-n+3n=15 | | -2(z+11)=9 | | 4u-5=u+15 | | 22.1=x—-25.1 | | -33(z+11)=6 | | 6x-2x-5x-7-3x=0 | | 12=t/2–16 | | 11x-5=3x+51 | | 5x−5=9x+35x-5=9x+3 | | b/96=16 |

Equations solver categories